2.10. Slow flying and stall characteristics 22
2.11. Spinning 22
2.12. Wet wings – warning 23
2.13. Cold weather flying and risk of carburettor icing 23
2.14. Operating without outriggers 23 (only applies to single mainwheel undercarriage version) 23
2.15. Safety factors and engine reliability 23
2.16. Attachment points for parachute static release 23
2.17. Emergency canopy release 24
2.18. Type familiarisation 24
2.19. Crosswind 24
2.20. Field landings 24
3. Performance data 25
3.1. Take-off performance 25
3.2. Rate of climb 26
3.3. Airspeeds 26
3.4. Range and endurance (zero wind conditions) 26
3.5. Gliding performance 26
3.6. Range and endurance (zero wind conditions) 26
4. Centre of gravity and weight limits
4.1. Empty weight and centre of gravity
4.2. Centre of gravity at flying weights
4.3. Weight and balance limits
4.4. Empty weight and centre of gravity
5. Minimum equipment
5.1. Empty weight and centre of gravity
5.2. Weight and balance limits
5.3. Weight placard
6. Optional auxiliary equipment
7. Additional equipment
8. Noise reduction requirements
9.7. Additional electrical fuel pump
10. Optional auxiliary equipment
3. Performance data
20. Crosswind
21. Landing configuration
22. Take-off configuration
23. Approach and landing+three point landing+emergency configuration
24. Take-off configuration
25. Approach and landing+three point landing+emergency configuration
26. Approach and landing+three point landing+emergency configuration
27. Take-off configuration
28. Approach and landing+three point landing+emergency configuration
29. Approach and landing+three point landing+emergency configuration
30. Take-off configuration
31. Approach and landing+three point landing+emergency configuration
32. Approach and landing+three point landing+emergency configuration
33. Take-off configuration
34. Approach and landing+three point landing+emergency configuration
35. Approach and landing+three point landing+emergency configuration
36. Take-off configuration
37. Approach and landing+three point landing+emergency configuration
38. Approach and landing+three point landing+emergency configuration
39. Take-off configuration
40. Approach and landing+three point landing+emergency configuration
41. Approach and landing+three point landing+emergency configuration
42. Take-off configuration
43. Approach and landing+three point landing+emergency configuration
44. Approach and landing+three point landing+emergency configuration
45. Take-off configuration
46. Approach and landing+three point landing+emergency configuration
47. Approach and landing+three point landing+emergency configuration
48. Take-off configuration
49. Approach and landing+three point landing+emergency configuration
50. Approach and landing+three point landing+emergency configuration
51. Take-off configuration
52. Approach and landing+three point landing+emergency configuration
53. Approach and landing+three point landing+emergency configuration
54. Take-off configuration
55. Approach and landing+three point landing+emergency configuration
56. Approach and landing+three point landing+emergency configuration
57. Take-off configuration
58. Approach and landing+three point landing+emergency configuration
59. Approach and landing+three point landing+emergency configuration
60. Take-off configuration
61. Approach and landing+three point landing+emergency configuration
62. Approach and landing+three point landing+emergency configuration
63. Take-off configuration
64. Approach and landing+three point landing+emergency configuration
65. Approach and landing+three point landing+emergency configuration
66. Take-off configuration
67. Approach and landing+three point landing+emergency configuration
68. Approach and landing+three point landing+emergency configuration
69. Take-off configuration
70. Approach and landing+three point landing+emergency configuration
71. Approach and landing+three point landing+emergency configuration
72. Take-off configuration
73. Approach and landing+three point landing+emergency configuration
74. Approach and landing+three point landing+emergency configuration
75. Take-off configuration
76. Approach and landing+three point landing+emergency configuration
77. Approach and landing+three point landing+emergency configuration
78. Take-off configuration
79. Approach and landing+three point landing+emergency configuration
80. Approach and landing+three point landing+emergency configuration
81. Take-off configuration
82. Approach and landing+three point landing+emergency configuration
83. Approach and landing+three point landing+emergency configuration
84. Take-off configuration
85. Approach and landing+three point landing+emergency configuration
86. Approach and landing+three point landing+emergency configuration
87. Take-off configuration
88. Approach and landing+three point landing+emergency configuration
89. Approach and landing+three point landing+emergency configuration
90. Take-off configuration
91. Approach and landing+three point landing+emergency configuration
92. Approach and landing+three point landing+emergency configuration
93. Take-off configuration
94. Approach and landing+three point landing+emergency configuration
95. Approach and landing+three point landing+emergency configuration
96. Take-off configuration
97. Approach and landing+three point landing+emergency configuration
98. Approach and landing+three point landing+emergency configuration
99. Take-off configuration
100. Approach and landing+three point landing+emergency configuration
101. Approach and landing+three point landing+emergency configuration
102. Take-off configuration
1. Specifications and limitations

1.1. Engines

**SF 25 C Engines**

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>Max. revs</th>
<th>Take off (full power) (max. 5 min)</th>
<th>Cruise at 4800 rpm (72 PS/71bhp)</th>
<th>Max 5800 rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTAX 912 A(1)(2)(3)(4)</td>
<td>5800 rpm</td>
<td>Max. 5800 rpm</td>
<td>73.5 kW (100 PS/98bhp)</td>
<td>5800 rpm</td>
</tr>
<tr>
<td>ROTAX 912 S(2)(3)(4)</td>
<td>5800 rpm</td>
<td>Max. 5800 rpm</td>
<td>59.6 kW (82 PS/80bhp)</td>
<td>5800 rpm</td>
</tr>
</tbody>
</table>

Cruise at Max. 4800 rpm (63 PS/62bhp)

**Static rpm at full power**

- Min. 5000 rpm ± 100 rpm (Fixed pitch)
- Min. 5600 rpm ± 100 rpm (Fixed pitch)
- Max. 5600 rpm ± 100 rpm (Variable pitch, fine pitch)

**Cylinder head temperature max.**

- 120°C max. 120°C

1.2. Fuel

**ROTAX 912 A ( )**

- Min. ROZ 90
- EN 228 Normal
- EN228 SUPER
- EN 228 Super-Plus or AVGAS 100 LL

**ROTAX 912 S ( )**

- Min. ROZ 95
- EN 228 Normal
- EN 228 SUPER
- EN 228 Super-Plus or AVGAS 100 LL

Because of the higher lead content of AVGAS the valve seats are subjected to higher loads and there is increased carbon formation. Consequently AVGAS should only be used if there are vapour formation problems or if other types of fuel are not available. (see also Operating Manual for Rotax 912, section 10.2.2)

**Fuel tank capacity**

- 44 l (usable) or 55 l (usable) or 80 l (79 l usable)
1.3. Lubricants

Branded engine oils with gear additive

Never use unblended aviation engine oil.

Approved oils:

Use only API rated SF or SG oils.

[Further details in Section 10.2.3) Lubricants in ROTAX 912 Operating Manual.]

Synthetic & semi-synthetic oils should be used in preference as they are more temperature resistant and produce less residues.

NB: If AVGAS 100LL is used, the oil must be changed more frequently. See Service Information 18 UL 97.

Oil capacity 3.0 l (minimum 2.0 l)

Oil consumption max. 0.1 l/hr

Oil pressure

ROTAX 912 A ( )

min. 0.8 bar (< 3500 rpm) 0.8 bar (< 3500 rpm)

[1.5 bar up to engine serial no. 4,410.266]

normal 2.0 – 5.0 bar > 3500 rpm 2.0 – 5.0 bar > 3500 rpm

[1.5-5.0 bar up to engine serial no. 4,410.266]

max. maximum 7.0 bar

Warning: Permissible for short duration on cold starting.

Oil temperature

ROTAX 912 A ( )

Min. 50° C

Max. 140° C

Best operating temperature approx. 90° C - 110° C


1.4. Cooling system

Sealed cooling system with expansion and overflow vessel. The expansion vessel is sealed with a pressure cap (with excess pressure and blow valve).

Coolant:

50% antifreeze with anti-corrosion additives and 50% water, for all year round operation.

(see also ROTAX 912 Operating Manual, Section 10.2.1.)

1.5. Propeller

1) 2 blade fixed pitch

a) Hoffmann HO11AHM-165130 for ROTAX 912 A(1), A(2) and A(4)

b) MT-Propeller MT165R130-2A for ROTAX 912 A(1), A(2) and A(4)

c) MT-Propeller MT170R135-2A for ROTAX 912 S(2) and S(4)

d) MT-Propeller MT175R130-2A for ROTAX 912 S(2) and S(4)

2) 2 blade variable pitch

a) MT-Propeller MTV1A/175-05 for ROTAX 912 A(2), A(4), S(2), S(4)

b) MT-Propeller MTV21A-C-F/(CF)175-05 for ROTAX 912 A(3), S(3)

(factory setting of fine pitch for 912 A = 12° ± 0.2° for 912 S = 14° ± 0.2° , see propeller card)

∆∆ ∆∆ ROTAX 912 A + variable pitch propeller:

Not for max. AUW of 580 kg

∆∆ ∆∆ ROTAX 912 S + fixed or variable pitch propeller:

Only for max AUW of 650 / 690 kg

∆∆ ∆∆

1.6. Engine instrumentation and markings

Rev counter

Starting range 0 – 1400 rpm (yellow arc)

Normal operating range 1400 - 4800 rpm (green arc)

Caution range 4800 -5800 rpm (yellow arc)

Max. revs 5800 rpm (red line)

Engine hours counter

The engine hours counter is a revolution counter. Irrespective of the actual rpm it counts 5000 revolutions as 1 minute of operation. The first three digits represent completed hours and the last two digits show values for 1/10 and 1/100 of an hour respectively.

If an electronic rev counter without engine hours counter is in use, then there must be a separate engine hours counter.

Oil pressure gauge

Minimal operating range 0.8 - 2.0 bar (yellow arc)

0.8 – 1.5 bar (for ROTAX 912 A, up to engine serial no. 4,410.266)

Normal operating range 2.0 - 5.0 bar (green arc)

1.5 – 5.0 bar (for ROTAX 912 A, up to engine serial no. 4,410.266)

Permissible for short duration on cold starting 5.0 – 7.0 bar (yellow arc)

Maximum oil pressure 7.0 bar (red line)

Oil temperature gauge

ROTAX 912 A ( )

Normal operating range (green arc)

50° - 140° C

Minimum temperature (red line)

50° C

Maximum oil temperature (red line)

140° C

Cylinder head temperature

Maximum cylinder head temperature  ROTAX 912 A

ROTAX 912 S

(red line)

120° C

120° C

1.11. Connecting other consumers.

Further circuit breakers may be added to the terminal bar for additional consumers. This applies to ACL, nav lights, VOR, transponder, encoder etc. It is important to ensure that the additional equipment is using the correct fuse rating. The aircraft wiring system is 12 V DC, negative ground. The appropriate regulations must be observed when fitting additional equipment. The fuses on the firewall can be replaced with state of the art circuit breakers. There is then no need for spare fuses and a visual check can be made to see which system has tripped out.

1.12. Airspeed limitations and load factors

This table shows maximum airspeeds under different conditions:

<table>
<thead>
<tr>
<th>Speed</th>
<th>IAS</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kph</td>
<td>knots</td>
<td></td>
</tr>
<tr>
<td>NE</td>
<td>190</td>
<td>Maximum speed in calm conditions. Never exceed this speed. Control surface movements must be limited to one third travel.</td>
</tr>
<tr>
<td>RA</td>
<td>150</td>
<td>Maximum speed in rough air conditions. Do not exceed this speed except in calm air conditions and then only with caution. See Note 1.</td>
</tr>
<tr>
<td>A</td>
<td>100</td>
<td>Manoeuvring speed. See Note 2.</td>
</tr>
<tr>
<td>W</td>
<td>110</td>
<td>Winch launch speeds. Only permissible with engine stopped.</td>
</tr>
</tbody>
</table>

Note 1: Rough air means conditions which may be encountered in wave rotor, cumulo-nimbus clouds, whirlwinds and when flying over mountain ridges.

Note 2: At speeds in excess of V_A, do not make full or abrupt control movements, as they could overstress the structure.

Note 3: The lower limit applies to maximum weight and most forward CG position. (V_{S1} is the minimum speed with spoilers extended.) The upper limit is the maximum rough air speed.

Note 4: In this range manoeuvres must be conducted with caution and only in calm wind conditions.

1.13. Weights

<table>
<thead>
<tr>
<th>Weight</th>
<th>Empty weight (dependent on type of undercarriage and equipment) 400kg–450kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>600/ 640 kg Permissible load</td>
</tr>
</tbody>
</table>

With spoilers extended:

- at maximum speed (190 kph = 102 knots): +5.3g
- at maximum speed (150 kph = 80 knots): +4.0g
- at maximum speed (80 kph = 43 knots): +3.5g

With spoilers closed:

- at maximum speed (190 kph = 102 knots): +4.0g
- at maximum speed (80 kph = 43 knots): +3.5g

Note: The following loads must not be exceeded when flying accurately:

- With spoilers closed at manoeuvring speed: (150 kph = 80 knots) +5.3g
- With spoilers extended at maximum speed (190 kph = 102 knots) +4.0g

The appropriate regulations must be observed when fitting additional equipment. The maximum permissible AUW (all up weight) is 580kg/ 610kg/ 650kg/ 690 kg. Maximum weight of non-lifting components is 430kg/ 450kg/ 490kg/ 530 kg. (*) Delete as appropriate.

2.12. Wet wings – warning

The SF 25 C uses a modern glider wing section so it is sensitive to rain on the wings. The airflow over the wings is disturbed by the rain drops, which reduces the lift available. With dry wings the minimum speed is 38 knots, but with wet wings it is about 44 – 46 knots. The stall characteristics are also affected. With dry wings, the SF 25 C is good-natured in a stall, but with wet wings it can drop a wing. When flying in rain, always fly at speeds greater than 46 knots. When taking off with wet wings, never lift off at less than 46 knots. Climb and approach at about 57 knots. Avoid steep turns and other high g force manoeuvres. Any snow or ice/white ice on the wings must always be removed before take-off. Don’t forget to clean off the tailplane too.

2.13. Cold weather flying and risk of carburettor icing

At all times of the year and especially during the cooler seasons it is important to monitor that the engine oil temperature never drops below 70° C. Intermediate settings on the cowl flap (infinitely adjustable) are effective in controlling the cooling air reaching the engine. Always ensure that the maximum cylinder head temperature never exceeds 120° C (ROTAX 912 A and ROTAX 912 S).

2.14. Operating without outriggers

(only applies to single mainwheel undercarriage version)

The SF 25 C can also be operated without the outriggers fitted. You can taxi with a wing tip holder. At take-off an assistant must run with the wing tip until the ailerons become effective. When landing the SF 25 C can be held level with ailerons virtually until it has stopped.

2.15. Safety factors and engine reliability

Never forget that any motor glider engine is designed to simpler approval specifications than other aero engines. Consequently motor glider engines are simpler and cheaper, so always plan your route with safety in mind and maintain the necessary safety heights. You should always fly within gliding reach of a good field landing opportunity.

2.16. Attachment points for parachute static release

The static release cords for automatic parachutes are hooked on to the tubular member above the seat back near the red mark, port for the port seat and starboard for the starboard seat.

3. Performance data

The specifications in this section refer to the following propellers: HO11AHM-165, MT165R130-2A, MT170R135-2A or MT175R130-2A, MTV1A/175-05 and MTV21A-C-F/(CF)175-05.

### 3.1. Take-off performance

These performance figures were obtained from type test results and can be reproduced provided that the motor glider and engine are in good condition and that the pilot is of average ability and skill.

<table>
<thead>
<tr>
<th>Airfield height above sea level (m)</th>
<th>Take-off run to clear 15 m obstruction (m)</th>
<th>Total take-off distance to clear 15 m obstruction (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>250</td>
<td>1020</td>
</tr>
<tr>
<td>100</td>
<td>300</td>
<td>1170</td>
</tr>
<tr>
<td>200</td>
<td>350</td>
<td>1320</td>
</tr>
<tr>
<td>300</td>
<td>400</td>
<td>1470</td>
</tr>
<tr>
<td>400</td>
<td>450</td>
<td>1620</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>1770</td>
</tr>
<tr>
<td>600</td>
<td>550</td>
<td>1920</td>
</tr>
<tr>
<td>700</td>
<td>600</td>
<td>2070</td>
</tr>
<tr>
<td>800</td>
<td>650</td>
<td>2220</td>
</tr>
<tr>
<td>900</td>
<td>700</td>
<td>2370</td>
</tr>
<tr>
<td>1000</td>
<td>750</td>
<td>2520</td>
</tr>
</tbody>
</table>

This table applies to all previously quoted engine/propeller combinations and to all aircraft weights. Values for ground run and take-off over a 15 m obstacle are the same as or better than those in the table for the variable pitch propeller and /or the ROTAX 912 S engine.

### 2.17. Attitude and control limits

#### 2.17.1. Angle of attack and control limit

- Maximum angle of attack: +25°
- Minimum angle of attack: -15°

#### 2.17.2. Stall speed

- Normal stall speed: 38 knots
- Maximum stall speed: 46 knots

#### 2.17.3. Climb speed

- Climb speed: 49 – 51 knots

#### 2.17.4. take-off speed

- Take-off speed: approx. 38 knots

#### 2.17.5. Approach speed

- Approach speed: 57 knots

### 2.18. Operating without outriggers

(only applies to single mainwheel undercarriage version)

The SF 25 C can also be operated without the outriggers fitted. You can taxi with a wing tip holder. At take-off an assistant must run with the wing tip until the ailerons become effective. When landing the SF 25 C can be held level with ailerons virtually until it has stopped.

### 2.19. Safety factors and engine reliability

Never forget that any motor glider engine is designed to simpler approval specifications than other aero engines. Consequently motor glider engines are simpler and cheaper, so always plan your route with safety in mind and maintain the necessary safety heights. You should always fly within gliding reach of a good field landing opportunity.

### 2.20. Attachment points for parachute static release

The static release cords for automatic parachutes are hooked on to the tubular member above the seat back near the red mark, port for the port seat and starboard for the starboard seat.

### 3. Performance data

The specifications in this section refer to the following propellers: HO11AHM-165, MT165R130-2A, MT170R135-2A or MT175R130-2A, MTV1A/175-05 and MTV21A-C-F/(CF)175-05.

#### 3.1. Take-off performance

These performance figures were obtained from type test results and can be reproduced provided that the motor glider and engine are in good condition and that the pilot is of average ability and skill.

<table>
<thead>
<tr>
<th>Maximum permissible AUW</th>
<th>Take-off run to lift off (m)</th>
<th>Total take-off distance to lift off (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>580 kg</td>
<td>1020</td>
<td>1020</td>
</tr>
<tr>
<td>610 kg</td>
<td>1170</td>
<td>1170</td>
</tr>
<tr>
<td>650 kg</td>
<td>1320</td>
<td>1320</td>
</tr>
<tr>
<td>690 kg</td>
<td>1470</td>
<td>1470</td>
</tr>
</tbody>
</table>

### 2.17. Attitude and control limits

#### 2.17.1. Angle of attack and control limit

- Maximum angle of attack: +25°
- Minimum angle of attack: -15°

#### 2.17.2. Stall speed

- Normal stall speed: 38 knots
- Maximum stall speed: 46 knots

#### 2.17.3. Climb speed

- Climb speed: 49 – 51 knots

#### 2.17.4. take-off speed

- Take-off speed: approx. 38 knots

#### 2.17.5. Approach speed

- Approach speed: 57 knots

### 2.18. Operating without outriggers

(only applies to single mainwheel undercarriage version)

The SF 25 C can also be operated without the outriggers fitted. You can taxi with a wing tip holder. At take-off an assistant must run with the wing tip until the ailerons become effective. When landing the SF 25 C can be held level with ailerons virtually until it has stopped.

### 2.19. Safety factors and engine reliability

Never forget that any motor glider engine is designed to simpler approval specifications than other aero engines. Consequently motor glider engines are simpler and cheaper, so always plan your route with safety in mind and maintain the necessary safety heights. You should always fly within gliding reach of a good field landing opportunity.

### 2.20. Attachment points for parachute static release

The static release cords for automatic parachutes are hooked on to the tubular member above the seat back near the red mark, port for the port seat and starboard for the starboard seat.
3.5. Glide performance

With engine stopped, cowl flap closed, clean wings and (if fitted) Variable pitch prop

- Minimum rate of sink at 43 knots (single mainwheel undercarriage) 1.12 m/sec
- Minimum rate of sink at 43 knots (two wheel undercarriage) 1.18 m/sec
- Minimum rate of sink at 43 knots (tricycle undercarriage) 1.17 m/sec

The values are improved somewhat when the variable pitch propeller is set to glide configuration.

4. Centre of gravity and weight limits

- Caution: It is the responsibility of the pilot (P1) to ensure that the weight limits are observed.

4.1. Empty weight centre of gravity

- Always ensure that the empty weight CG remains within the permitted limits, for example after major repairs, the installation of additional equipment or repainting. If necessary, ballast weights must be fitted. Should this occur, a suitably qualified inspector must be called in. Permitted empty weight CG range (see Maintenance Manual, pp 23-24).

- Aircraft position: Wing chord at rib 6 (2.2 m / 86.61" from the centre line) = horizontal.

- Datum: 2.0 m / 78.74" ahead of the leading edge of rib 0 (root rib), 0.52 m / 20.47" from centre line.

- If the empty weight CG is kept within the approved empty weight CG range, compliance with the loading chart will ensure that the flying weight CG will automatically remain within its permitted range.

4.2. Centre of gravity at flying weights

- In flight the centre of gravity has a considerable influence on the handling qualities of the aircraft. For this reason it is of vital importance that the prescribed CG limits are scrupulously observed. The following limits of CG flying weights have been tested and approved:

  - Applicable to: Flying weights of 580 kg, 610 kg, 650 kg and 690 kg.
  - max forward CG: 2,143 m / 84.37" aft of datum
  - max aft position of CG: 2.334 m / 91.87" aft of datum

Section X

- Noise reduction requirements

  - Only German national noise limits for:
    - Section: VI
    - Noise limit for enhanced noise abatement: Calculated noise level
    - Noise limit for enhanced noise abatement: Calculated noise level

  - With the following engine / propeller combinations:

    | Max. flying weight | Up to build date | From build date |
    |-------------------|------------------|-----------------|
    | 580 kg            | XXX              | XXX             |
    | 610 kg            | XXX              | XXX             |
    | 650 kg            | XXX              | XXX             |
    | 690 kg            | XXX              | XXX             |

    | Section X 238 | Section X 240 |
    |---------------|---------------|
    | SF 25 C       | ROTAX 912 A(1), A(2) or A(4) MT165R130-2A HO11AHM-165 130 |
    | SF 25 C       | ROTAX 912 A(2) or A(4) MTV1A/175-05 |
    | SF 25 C       | ROTAX 912 A(3) MTV21A-C-F/(CF)175-05 |

7. Additional electrical fuel pump

- An additional electric fuel pump can be installed in the motor glider as an option.

8. Noise reduction requirements

- With the following engines / propeller combinations:

<table>
<thead>
<tr>
<th>Max. flying weight</th>
<th>Applicable to: Flying weights of 580 kg, 610 kg, 650 kg and 690 kg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>580 kg</td>
<td>320 m / 126&quot;</td>
</tr>
<tr>
<td>610 kg</td>
<td>320 m / 126&quot;</td>
</tr>
<tr>
<td>650 kg</td>
<td>320 m / 126&quot;</td>
</tr>
<tr>
<td>690 kg</td>
<td>320 m / 126&quot;</td>
</tr>
</tbody>
</table>

- ROTAX 912 A(1), A(2) or A(4) MT165R130-2A HO11AHM-165 130

- ROTAX 912 A(2) or A(4) MTV1A/175-05

- ROTAX 912 A(3) MTV21A-C-F/(CF)175-05
Only German national noise limits for:

### Section X

**SF 25 C**

Noise limit for enhanced noise abatement with the following engine / propeller combinations

<table>
<thead>
<tr>
<th>Engine / Propeller</th>
<th>Max. flying weight</th>
<th>After build date,</th>
<th>Calculated noise level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>65.6</td>
</tr>
<tr>
<td>650 kg</td>
<td></td>
<td></td>
<td>63.6</td>
</tr>
<tr>
<td>690 kg</td>
<td></td>
<td></td>
<td>65.6</td>
</tr>
<tr>
<td>690 kg</td>
<td></td>
<td></td>
<td>65.6</td>
</tr>
<tr>
<td>670 kg</td>
<td></td>
<td></td>
<td>65.6</td>
</tr>
</tbody>
</table>

- **Enhanced German national noise abatement requirements** will be met if the measured noise level is within the maximum values prescribed in Annex 2 of the airfield noise abatement regulation by the following amounts:
  - in Section VI
    - for build date before 1 January 2000: min. 4 dB(A)
    - and for build date from 1 January 2000: min. 5 dB(A)
  - in Section X
    - for build date before 1 January 2000: min. 6 dB(A)
    - and for build date from 1 January 2000: min. 7 dB(A)

These values have been incorporated in the table above.